تاريخ : جمعه 6 ارديبهشت 1392برچسب:, | 17:48 | نویسنده : بهزاد دالوند

تاریخچه سقف کرمیت


سقف کرمیت از سال 1356 به صورت یک طرح مقدماتی در مهندسی ارتش برای اصلاح سیستم طاق ضربی مورد استفاده قرار گرفت  و پس از دریافت مجوز رسمی از وزارت صنایع سنگین و وزارت صنایع در سال 1360 شروع به تولید انبوه سقف کرمیت در ایران شد و تاکنون بالغ بر میلیون ها متر مربع از سقف کرمیت در سازه های بتنی ، فلزی و بنایی در سراسر کشور مورد استفاده قرارگرفته است

 

مقاله ای کامل راجع به سقف کرمیت (برگرفته از سایت kava.ir):

سقف کرمیت چیست


 

در سیستم سقف کرمیت از تیرچه های فولادی با جان باز در ترکیب با بتن استفاده می شود. در ساخت تیرچه های مذکور از یک تسمه، در بال تحتانی و نیز یک میلگرد خم شده در جان استفاده می شود. برای پرکردن فضای خالی بین تیرچه ها از قالب های ثابت مانند بلوک های سیمانی، پلی استایرن، طاق ضربی ، قالب های موقت فولادی (کامپوزیت ) و یا هر پرکننده سبک استفاده می شود. فواصل تیرچه ها بسته به نوع قالب از 73 سانتی تا 100 سانتی متر متغیراست ، روی سقف نیز با 4 الی 10 سانتی متر بتن پوشانده می شود.

تیرچه ها از نوع خود ایستا بوده و به همین علت هیچ نوع شمع بندی در زیر سقف مورد نیاز نمی باشد و تیرچه ها به نحوی طراحی می شوند که بتوانند وزن بتن خیس، قالب ها و عوامل اجرایی سقف را به تنهایی تحمل کنند.

پس ازاین که بتن به 75% مقاومت مشخصه خود می رسد ، تیرچه های فولادی با بتن به صورت یک مقطع مختلط وارد عمل شده و بارهای مرده و زنده سقف را تحمل می کنند.

 

سقف ضربی کرمیت:


به علت اجبار در استفاده ار مصالح فشاری از زمان های قديم استفاده از طاق قوسی متداول بوده و به همین جهت استفاده از سیستم طاق ضربی نیز به عنوان نوعی طاق قوسی رواج داشته است. وجود اشکالات عمده در عملکرد سقف های ضربی با تیرآهن مانند عدم ایجاد یک دیافراگم مناسب بین ستون ها و مصرف زیاد فولاد در مقایسه با مقدار باربری ، باعث شد تا در سال 1356 با ارائه طرحی بهینه « سقف ضربی کُرمیت » نسبت به اصلاح این سیستم اقدام گردد.
در سیستم طاق ضربی کُرمیت وجود بتن روی سقف می تواند یک دیافراگم مناسب بین ستون ها ایجاد کند و همچنین به علت بازبودن جان تیرچه ها مقدار زیادی در مصرف فولاد صرفه جویی  می شود.
اگر چه از اين سيستم در انبوه سازي استفاده نمي شود ، اما براي پروژه هاي كوچك و يا دور افتاده ، هنوز هم كاربرد دارد.

 

 

سقف تیرچه و بلوک کرمیت:


با متداول شدن سقف های تیرچه و بلوک سنتی برخی از مشکلات سیستم طاق ضربی مرتفع شد. اما این سقف ها مشکلات دیگری را به همراه خود پدید آوردند که عمده ترین آنها ضرورت استفاده از شمع بندی در زیر سقف است.
شمع بندی علاوه بر دست و پاگیر بودن هزینه زیادی را نیز بر ساختمان تحمیل می کند. در سال 1363 با استفاده از بلوك کُرمیت به جاي طاق ضربي كه قبلا" در اين سيستم بعنوان قالب ثابت بكار مي رفت عملا" سقف تیرچه وبلوک کُرمیت وارد بازار شد.
این سقف به علت خود ایستا بودن تیرچه ها نیازی به شمع بندی ندارند و به همین علت از سرعت اجرای بسیار بالایی برخوردار می باشد. اجرای این سقف بر روی اسكلت های فولادی بتنی و دیوارهای باربر امکان پذیر می باشد.همچنین فاصله محور تا محور تیرچه ها نباید از 70 سانتیمتر بیشتر باشد. بتن روی بلوکه ها از 4 تا 10 سانتیمتر است.

 

سقف پلیمری کرمیت:


استفاده از بلوک های پلی استایرن نسوز در سقف باعث کاهش مصرف تیرچه تا حدود 20% و کاهش فولاد مصرفی سازه تا حدود 7% می شود.
سهولات اجرای این نوع سقف کرمیت، باعث افزایش سرعت اجرا و درنیتجه کاهش هزینه های اجرایی می گردد. در عین حال در هزینه های حمل و نقل نیز صرفه جویی قابل ملاحظه ای صورت می گیرد. شیارهای مناسب ایجاد شده در زیر این بلوک ها باعث  پیوستگی گچ و خاک در زیر سقف می گردد.

تیرچه فلزیمشکلات و معایب سقف کرمیت

 

1- تيرچه هاي سقف كرميت بصورت خود ايستا طراحي مي شوند . خود ايستا بودن تيرچه ها ، باعث بي نيازشدن سقف کرمیت از جك ها و شمع هاي نگهدارنده سقف  مي شود . اما از طرفي موجب ميشود تا تيرچه ها بگونه اي طراحي شوند كه تا قبل از گرفتن بتن ، به تنهايي وبدون كمك بتن ، وزن خود وبتن تازه وقالبهاو... را تحمل كنند واين در واقع بدين معني است كه تيرچه سقف كرميت مجبور است تنها بخاطر مرحله اول باربري خود ( قبل از گرفتن بتن ) ، سنگين تر از آنچه در نهايت به آن نياز است طراحي شود واين موجب عدم استفاده بهينه در مصرف فولاد تيرچه مي شود .

 

2- داغ تيرچه :

 

 مثل سقف طاق ضربي ، در سقف كرميت نيز ، بيشتر ين ميزان داغ تيرچه در زير سقف نمايان مي گردد .

 

( داغ تيرچه كه بواسطه وجود نيروهاي مغناطيسي در فلز تيرها وجذب ذرات باردار معلق در هوا ميباشد )

 

3- بلوك :

 

اصولاً استفاده از بلوك در سقف معايب ومشكلات معمول انواع بلوكها را بهمراه دارد كه از هزينه خريد وحمل وانبار كردن تا وزن اضافه تحميلي به سقف واثرات سوء احتما لي بر بتن وفولاد ومسائل اجرايي ديگر را شامل ميشود. اما علاوه برموارد فوق سقف كرميت مشكلات مضاعفي نيز در استفاده از بلوكها دارد . بواسطه نياز سقف كرميت به بلوكهاي به ابعاد 40×25×65 وعدم استقبال كارخانه ها، از اين نوع سفال و احياناً عدم امكان دسترسي يا توانايي شركت كرميت درساخت بلوك سفا لي ، استفاده ازبلوك بتني توصيه شده است كه مسلماً موجب افزايش وزن تمام شده سقف ميگردد. البته شركت كرميت پارس ، استفاده از بلوكهاي يونو ليتي ويا قالب فلزي رانيز توصيه كرده است وهمانطور كه مطرح شد در استفاده از بلوكهاي يونوليتي آ تشزا بودن آن و... همچنين استفاده از قالبهاي فلزي ، افزون بر تحميل هزينه هاي سقف كاذب ، ميتواند موجب بوجود آمدن هزينه هاي بسيار زياد در صورت بتن ريزي همزمان چند سقف گردد. ( بعبارتي ديگر ، استفاده ازقالب فلزي بجاي بلوك، عملاً با مهمترين ويژگي اين سقف كه همان سرعت اجراي كرميت است همخواني نداشته ونيازبه انتظار تا قالب گشايي خواهد داشت . )

 

4- اين سقف کرمیت نياز به سقف زن ماهر وعوامل اجرايي آموزش ديده دارد .

 

5-تولید بدون محاسبه.

 

درحال حاضرکتابی تحت عنوان((جداول تیرچه های فولادی با جان باز))موجود است که با توجه به بارهای مختلف ونوع بتن ریزی ونوع بلوک مورد استفاده،جداولی راارائه نموده که دران،مقطع بال فوقانی وتحتانی تیرچه ها اورده شده است.

 

ناشراین کتاب در ابتداهرگونه ساخت تیرچه را منوط به محاسبه ،توسط مهندسین محاسب نموده است.اما اکثر قریب به اتفاق تولید کنندگان ،تیرچه ها را براساس همین جداول تهیه می نمایندوچون این جداول از سوی نهادهای رسمی کشور منتشر نشده است،ایراداتی مانند: عدم پیش بینی بلوکه های سفال در جداول ،عدم ارایه مشخصات زیگزاگها،بارگذاری غیرواقعی و... در ان مشهود است.

 

بدلیل وجود کنترلهای زیاد در محاسبات هر تیرچه ، ونیز لزوم سعی وخطا در انتخاب مقطع بهینه اقتصادی ،ونیز وجود تیرچه هایی با طولهای مختلف در هر ساختمان ونیاز به طراحی هر تیرچه بطور جداگانه ،انجام محاسبات تیرچه های سقف کرمیت امری مشکل به نظر می رسد،که فقدان نرم افزارهای کارا،سریع ومطمئن در این زمینه کاملا مشهوداست.

 

6-وجوداختلاف نظر در اجرا.

 

بدلیل عدم توضیح کامل جزئیات اجرایی در ایین نامه های موجود،اختلافاتی در زمینه جزئیات اجرایی بین مهندسین ناظروصاحب نظران وجوددارد،که ازجمله میتوان به مواردی همچون سایز ارماتورهای کلاف میانی،نیاز ویا عدم نیاز به ارماتورها ی تقویت سرتیرچه هاو...اشاره نمود.

 

نکته دیگر اینکه ،در شرایط فعلی بدلیل اطلاعات ناکافی کارفرمایان درخصوص    اجرای    سقف کرمیت ، موقعیتی برای افرادغیر متخصص وفرصت طلب بوجود امده است ،که با ارایه قیمتهای نازل وبا اجرای غیر اصولی سقفها ،امکان خطر افرینی سقفها را به هنگام باربری نهایی وحتی در حین اجرا وبتن ریزی افزایش می دهند.ترس از عدم تحمل بارهای اجرایی توسط تیرچه هاواستفاده از شمع بندی در زیر سقف کرمیت ،شاهد این مدعاو نشان دهنده فقدان پشتوانه محاسباتی وتفکر مهندسی در اجرای بعضی از این سقفها می باشد.

 

امكان حذف كش ها :

 

عمده ترين بحثي كه در زمينه سقف كرميت وجود دارد. در مورد امكان حذف كش هاست .

 

كش ها : كش ها تيرهاي اصلي هستند كه اتصالات آنها عموماً بصورت دوسر مفصل ميباشد ، بنابراين متحمل بار جانبي نميشوند . از طرفي بار ثقلي نيز روي آنها هدايت نمي شود . بنابراين اين تير عملاً نقش باربر نداشته وتنها وظيفه قاب بندي وهماهنگي تغيير مكان ها را برعهده دارد .

 

در سقفهای تیرچه بلوک معمولی بعلت عدم امكان اتصال مكانيكي بين تيرچه هاي بتني وپل هاي فلزي ، فرض بر اين است كه هماهنگي تغيير مكان جانبي قاب ها به وسيله كشها تأ مين ميگردد.

 

وجه تمايز سقف كرميت در مقايسه با سقف هاي تيرچه وبلوك معمولي این است که

 

تيرچه ها،در سقف کرمیت فلزي بوده وبه اسكلت جوش ميشوند .بنابراین امکان کنترل  تغييير مكان جانبي قاب ها توسط تیرچه ها وجود دارد .

 

پس ازگرفتن بتن وتشكيل مقطع مركب تنش فشاري بتن ، به طور قابل ملاحظه اي از تنش مجاز كمتر است ومي توان روي اين ظرفيت اضافي در ظرفيت باربري نهايي سقف حساب كرد . طبق نظر مخترع سقف كرميت شبكه به هم پيوسته پل هاوتيرچه هاي كرميت ميتواند دال بتني سقف رادر مقابل نيروهاي درون صفحه اي مسلح كند واين سقف مانند يك ديافراگم صلب عمل كند وديگر نيازي به استفاده از كش ها ندارد، اما سازمان مديريت وبرنامه ريزي كشور اين ايده رارد كرده واجراي كش ها راضروري دانسته است.



تاريخ : جمعه 6 ارديبهشت 1392برچسب:, | 17:23 | نویسنده : بهزاد دالوند

 

 
ضعف در دمای زیاد : مقاومت ساختمان فلزی با افزایش دما نقصان می یابد . اگر دکای اسکلت فلزی از 500 تا 600 درجه سانتی گراد برسد ، تعادل ساختمان به خطر می افتد .
 
خوردگی و فساد فلز در مقابل عوامل خارجی : قطعات مصرفی در ساختمان فلزی در مقابل عوامل جوی خورده شده و از ابعاد آن کاسته میشود و مخارج نگهداری و محافظت زیاد است .
 
تمایل قطعات فشاری به کمانش : با توجه به اینکه قطعات فلزی زیاد و ابعاد مصرفی معمولا" کوچک است ، تمایل به کمانش در این قطعات یک نقطه ضعف بحساب می رسد .
 
جوش نامناسب : در ساختمانهای فلزی اتصال قطعات به همدیگر با جوش ، پرچ ، پیچ صورت میگیرد . استفاده از پیچ و مهره وتهیه ، ساخت قطعات در کارخانجات اقتصادی ترین ، فنی ترین کار می باشد که در کشور ما برای ساختمانهای متداول چنین امکاناتی مهیا نیست . اتصال با جوش بعلت عدم مهارت جوشکاران ، استفاده از ماشین آلات قدیمی ، عدم کنترل دقیق توسط مهندسین ناظر ، گران بودن هزینه آزمایش جوش و ...... برزگترین ضعف میباشد.
 
تجربه ثابت کرده است که سوله های ساخته شده در کارخانجات درصورت رعایت مشخصات فنی و استاندارد ، این عیب را نداشته و دارای مقاومت سازه ایی بهتر در برابر بارهای وارده و نیروی زلزله است.
.


ادامه مطلب
تاريخ : جمعه 6 ارديبهشت 1392برچسب:, | 17:20 | نویسنده : بهزاد دالوند

 

برای سقف ساختمان اسكلت فلزی میتوان از انواع سقف به شرح زیلاستفاده كرد :
1ـ سقف طاقضربی
2ـ سقف تیرچهبلوك
3ـ سقف دالبتنی پیش ساخته
4 ـ سقف دالبتنی در جا و ...
سقف طاق ضربی
كه دیگر منسوخ شده و مرحله از رده خارج شدن را طی می كند و كمترسقفی را سراغ داریم كه از این پوشش استفاده كند .
سقف تیر چه بلوك
كه با استقبال زیادی روبرو شده است زیرا در كارگاههای محلی تولیدمی شوند و ارزانتر تمام می شوند و در مبحث ساختمان بتنی تشریح شده است .
سقف دال بتنی
انواع دال بتنی برای سازه های بیشتراجرا می شوند.
 


ادامه مطلب
تاريخ : جمعه 6 ارديبهشت 1392برچسب:, | 17:19 | نویسنده : بهزاد دالوند

 

ـ پی و فنداسیون
ـ ستون
ـ تیر
ـ تیرهای فرعی ) تیرچه(
ـ پله
ـ بادبند
ـ سقف
مراحل اجرا
شرایط پی كنی و پی ریزی همانند ساختمان بنایی است با این تفاوت كهدر ساختمان اسكلتی دیگر كلدف بندی نداریم و پی نواری زیر دیوار باربر دیگر اجرا نمیشود وتمام اعضای باربر كناری و داخلی را ستونهای فلزی تشكیل می دهند .
در اینجا نیز با تو جه به مقاومت خاك وبارهای وارده می توان ازانواع پی استفاده كرد كه به شرح زیر آمده است .
1ـ فنداسیونمنفرد یا تك
2ـ فنداسیوننواری
3ـ فنداسیون رادیه ( گسترده (
فنداسیون منفرد یا تك
با توجه به كاربری ساختمان ، بارهای وارده و مكانیك خاك واینكهساختمان در منطقه زلزله خیز قرار دارد یا نه عرض و ارتفاع و طول پی زیر هر ستونمشخص می شود كه یك مكعب است و این پی ها توسط كلافهای افقی كه معمولاً از مقطعكوچكتری برخودارند به هم وصل می شوند تا پی ساختمان پیوسته عمل كند و بعد عملیاتآرماتور بندی و مش بندی طبق آنچه در ساختمان بنایی تو ضیح داده شد انجام می پذیرد .
با توجه به آكس بندی كه در پلان فنداسیون صورت پذیرفته ودر آن كهازتفاع داده شده است در چندین نقطه از پی ساختمان میگردهایی را می كارد و توسطشیلنگ تراز به ارتفاع داده شده در پلان فنداسیون كه معمولاً آن را با (0 0 .0 ± ) نمایش می دهند علامت ها ی را می زنند كهارتفاع( 0 .0 ± ) یا از زمین كناری بلند تراست در آن صورت ارتفاع مربوط به زمین با علامت منفی نوشته شده و یا پایین تر اززمین كناری است .كه درآن صورت با علامت مثبتنوشته می شود
پس ازآن كه علامت گذاری تمام شد بر طبق آكسی در نقشه آورده شدهریسمانی در یك آكس طولی و یك آكس عرض می بندند به طوری در محل قرار گیری بیس پلیتهادو ریسمان كاملاً بر هم عمود باشند كه محل برخورد دو ریسمان وسط بیس پلیت خواهد بودو ریسمانها در اینجا نقش تراز راهم بازی می كنند چون دو طرف ریسمان به یك تراز بستهشده است با كار تمام بیس پلیتهای یك آكس كاملاً به موازات هم و در تر از یكدیگرقرار می گیرند زیرا اگر بیس پلیتها در یك تراز نباشند به همان ترتیب سقف ساختماننیز تراز نخواهد بود و این یك ایراد بزرگ برای ساختمان به شمار می رود .
بعد از عملیات بتن ریزی بیس پلیتها مجدداً باز و دوباره ملات نرمهزیر آن می ریزند و توسط پیچها تراز می كنند یعنی عملیات هواگیری انجام می دهند چوناحتمال دارد هنگام بتن ریزی بتن كاملاً زیر پلیت را پر نكرده باشد .
فنداسیون نواری
فنداسیون نواری دو طرفه و نواری یك طرفه است كه بر حسب موقعیتجغرافیایی منطقه و زلزله خیز بودن منطقه و بارهای وارده در روی فنداسیون از نوع یكطرفه یا دو طرفه استفاده می شود كه نوع دو طرفه یا مشبك نسبت به نوع یك طرفه قوی تراست .
فنداسیون منفرد
در اینجا چیزی به نام شناژ نداریم و عرض و ارتفاع مقطع چه زیر بتنو چه در قسمتهای دیگر یكسان است ولی در نوع یك طرفه ، همانطور كه از اسمش پیدا استدر یك جهت پی منفرد ولی در جهت نواری است .
فنداسیون رادیه ) گسترده (
در برخی موارد بر اساس بارهای وارده و اینكه منطقه زلزله خیز و یاخاك مقاومت كافی ندارد عرض پی های نواری دو طرفه یا مشبك به قدری بزرگ می شود كهمجبور هستی كل كف ساختمان آرماتور بندی وبتون ریزی كنیم كه به آن پی رادیه یاگسترده گفته می شود . ودر مناطق ما برایساختمانهای بزرگ از این نوع پی استفاده می شود .
قبل از اینكه ستونها نصب گردند توسط جوشكاران و با توجه به نقشهتیپ بندی ستونها در روی زمین قبلاً آماده می شوند كه در زیر شرح آن آمده است .
باتوجه به ارتفاع فاصله دو ارتفاع و فاصله دو پروفیل كه در یكستون شركت دارند آنها قبلاً به ارتفاع مورد نظر بریده شده و روی پروفیل قرار دادهمی شوند واین پروفیلها عمود بر هم هستند تا پروفیل ستون كه جوشكاری می شود از زمینفاصله داشته باشد و را حتر بتوان آن برگرداند تا دو طرف آن جوشكاری شود.
بعد از اینكه دو پروفیل مورد نظر در محل قرار گرفت با توجه بهاینكه چه پلیتهایی روی آن جوشكاری شود كه معمولاً‌ در طبقات پائین برای ساختمان چندطبقه از پلیت سرتاسری استفاده می شود . عملیاتجوشكاری انجام می گیرد .
و پلیتها به اندازه ها و ارتفاع مورد نظر و در فواصل مشخص شده درنقشه جوشكاری می شوند كه در محل اتصال سقف از پلیتهای بزرگتری استفاده می شود و اگردر محل اتصال سقف بادبند نیز اتصال داده شود از پلیتهای بزرگتر نسبت به پلیتهای سقفاستفاده می شود كه همه در نمای تیپ بندی ستون در نقشه داده شده است . به مثال اگر برای سقف از PL 60*23*1 استفاده كنیم برای بادبندی از PL120*23*1(B.R) استفاده می كنیم .
بعد از اینكه ستونها آماده شدن روی بیس پلیتها نبشی هایی را در یكجهت كه باهم ریسمان هستند جوش می دهند و محل قرار گیری ستون را مشخص می كند بعد همتوسط جرثقیل ستونها روی بیس پلیت قرار داده شده و به نبشی ها تكیه داده می شوند ودر واقع كار نبشی ها این است كه نگذارد ستونها تكان بخورد سپس ستونها را از چهارطرف جوشكاری می كنند و شاغول می نماید بدین تزتیب ستونها جهت اتصال تیرها آماده میشود .
با توجه نبشی های زیر سری كه برای اتنصال تیرها و شاه تیرها قرارداده شده است عملیات تیر ریزی صورت می پذیرد در پلان تیر ریزی شماره تیرها و محلاتصال آنها مشخص شده است اگر تیر لانه زنبوری باشد قبلاً روی زمین توسط جوشكارانساخته می شود ودر محل نصب می گردد ودر واقع سقف جهت اجرا آماده می شود كه معمولاً‌از تیرچه بلوك استفاده می شود .
بادبندهایی كه برای مقابله با نبروهای جانبی (WL) مورد استفاده قرار می گیرند عبارتنداز :
ـ بادبند ضربدری
ـ بادبند V شكل شامل Vشكل باز و بسته است
ـ بادبند 8 شكل شامل 8 شكل باز و بسته است
ـ بادبندK شكل و ...
بادبندها اعضا كششی فشاری هستند كه برای مقابله با نیروهای جانبیدر نظرگرفته می شوند و مانع كج شدن اسكلت ساختمان درهنگام اعمال نیروی جانبی میگردند كه باید در یك ساختمان به صورت متقارن اجرا گردند یعنی در هر چهار طزفساختمان باید بكار گرفته شوند كه بر حسب دلایل معماری میتوان از انواع بادبنداستفاده كرد .
بطور مثال در جاهایی كه می خواهیم از پنجره یا نور گیر و حتی دراستفاده كنیم باد بند 8 شكل باز بهترین گزینهبرای ما خواهد بود ولی از لحاظ مقاومت K شكلبهترین حالت برای یك دیوار بادبندی می باشد .
عرض وارتفاع پلیتها قبلاً با توجه به طول جوش و زاویه اتصال تیربادبند محاسبه شده است و اینكه نوع تیر باد بند از نبشی یا ناو دانی را سالم به دوپلیت گوشه جوش می دهند و توسط لقمه كه پلیت كوچكی دو ناو دانی را به هم جوش می دهندو در جهت دیگر ناودانی دو قسمت كرده ودر قسمت اتصال و تیر قبلی توسط پلیت به هم جوشمی دهند و بدین ترتیب دیوار بادبندی آماده می شود .
اما اگر بادبند 8 شكل باز یابسته باشد تمام ناو دانی سالم و طول مورد جوش داده می شود اجرای آن راحتر است .
برای ساختمان اسكلت فلزی معمولااز پله فلزی با شمشیری های پروفیلآهن استفاده می شود كه اندازه آنها در پلان تیرریزی داده می شود و طول آن نیز مشخصو توسط جوشكار قبلاً آماده و در محل نصب می گردد .
برای پوشش بین شمشیریهای پله می توان از مصالح سقف استفادهكردمانندتیرچه بلوك كه تیرچه های آن هم مثل تیرچه های سقف سفارش داده شده و حمل تادر محل مورد نظر قرار گیرد و همانند عملیات سقف تیرچه بلوك بتن ریزی می شود .


تاريخ : جمعه 6 ارديبهشت 1392برچسب:, | 13:31 | نویسنده : بهزاد دالوند

سازه بتنی سازه‌ای است که در ساخت آن از بتن یا به طور معمول بتن آرمه (سیمان، شن، ماسه و پولاد به صورت میلگرد ساده یا آجدار) استفاده شده باشد. در ساختمان در صورت استفاده از بتن آرمه در قسمت ستون‌ها و شاه تیرها و پی، آن ساختمان یک سازه بتنی محسوب می‌شود.

امروزه بسیاری از پلها را از بتن آرمه می سازند. برای استفاده از پل های بلندتر و بیشتر شدن فاصله پایه پلها از تیر پیشتنیده استفاده می شود.

مزایای سازه‌های بتنی

۱- ماده اصلی بتن که شن و ماسه می‌باشد ارزان و قابل دسترسی است.
۲- سازه‌های بتنی که مطابق با اصول آیین نامه‌ای طراحی و اجرا شده اند، در مقابل شرایط محیطی سخت، مقاومتر از سازه‌های ساخته شده با مصالح دیگر هستند.
۳- به علت قابلیت شکل پذیری بالای بتن، امکان ساخت انواع سازه‌های بتنی نظیر پل، ستون و ... به اشکال مختلف میسر است.
۴- سازه‌های بتنی در مقابل حرارت زیاد ناشی از آتش سوزی بسیار مقاوم اند. آزمایشات نشان داده اند که در صورت ایجاد حرارتی معادل ۱۰۰۰ درجه سانتی گراد برای یک نمونه بتن آرمه، حداقل یک ساعت طول می‌کشد تا دمای فولاد داخل بتن، که با یک لایه بتنی با ضخامت ۲٫۵ سانتی متر پوشیده شده است، به ۵۰۰ درجه سانتی گراد برسد.

روش‌های طراحی سازه‌های بتن آرمه

به طور کلی هدف از طراحی یک سازه، تامین ایمنی در مقابل فروریختگی و تضمین عملکرد مناسب در زمان بهره برداری است. چنانچه مقاومت واقعی یک سازه بطور دقیق قابل پیش بینی بود و در صورتی که بارهای وارد بر سازه و اثرات داخلی آنها نیز با همان دقت قابل تعیین بودند، تامین ایمنی تنها با ایجاد ظرفیت باربری به میزان جزئی بیش از مقدار بارهای وارده ممکن می گشت. لیکن عوامل نامشخص و خطاهای احتمالی متعددی در آنالیز، طراحی و ساخت سازه‌ها وجود دارند که یک حاشیه ایمنی را در طراحی سازه‌ها طلب می‌کنند. مهمترین ریشه‌ها و منابع این خطاها عبارتند از:

الف: بارهایی که در عمل به سازه وارد می‌شوند و همچنین توزیع واقعی آنها ممکن است با آنچه در بارگذاری سازه فرض شده است متفاوت باشند.
ب: رفتار واقعی سازه ممکن است با رفتار تئوریک سازه، که بر اساس آن نیروهای داخلی اعضا محاسبه می‌شوند، تفاوت داشته باشد.
ج: مقاومت واقعی مصالح به کار رفته در ساخت سازه ممکن است متفاوت از مقادیر فرض شده در محاسبات باشد.
د: ابعاد قطعات و محل واقعی میلگردها ممکن است دقیقا مطابق آنچه طراح در محاسبات خود فرض کرده نباشد.

بنابراین، انتخاب یک حاشیه ایمنی مناسب امر بسیار دشواری است که نحوه منظور نمودن آن، به صورت یکی از مشخصه‌های اساسی روش‌های طراحی در آمده است. به طور کلی طراحی سازه‌های بتن آرمه به سه روش زیر صورت می‌گیرد:

۱: تنش مجاز
۲: مقاومت نهایی
۳: روش طراحی بر مبنای حالات حدی

روش تنش مجاز

این روش که قبلا روش تنش بهره برداری یا روش تنش بار سرویس نامیده می‌شد، اولین روشی است که بصورت مدون برای طراحی سازه‌های بتن آرمه بکارگرفته شد. در این روش یک عضو سازه‌ای به نحوی طراحی می‌شود که تنش‌های ناشی از اثر بارهای بهره برداری (یا سرویس)، که به کمک تئوری‌های خطی مکانیک جامدات محاسبه می‌شوند، از مقادیر مجاز تنش‌ها تجاوز نکنند. منظور از بارهای بهره برداری یا سرویس بارهایی نظیر: بار زنده، بار مرده، بار برف و بار زلزله هستند. این بارها توسط آیین نامه‌های بارگذاری، مانند آیین نامه ۵۱۹ موسسه استاندارد و تحقیقات صنعتی ایران تعیین می‌شوند. در این روش منظور از تنش مجاز تنشی است که از تقسیم تنش حدی ماده، نظیر مقاومت فشاری برای بتن و مقاومت تسلیم برای فولاد، بر ضریب بزرگتر از واحد، به نام ضریب اطمینان به دست می‌آید. تنش‌های مجاز مصالح توسط آیین نامه‌های محاسباتی تعیین می‌شوند. به عنوان مثال مطابق آیین نامه ACI مقدار تنش فشاری مجاز بتن f ' c ۰٫۴۵می باشد.

بدین ترتیب مراحل این روش بطور خلاصه به ترتیب زیر هستند:
۱: تعیین بارهای وارد بر سازه
۲: آنالیز سازه و تعیین تنش‌ها در مقاطع مختلف به کمک تئوری‌های کلاسیک اجسام الاستیک
۳: تعیین تنش‌های مجاز با استفاده از یک آیین نامه محاسباتی
۴: طراحی نهایی مقطع با این محدودیت که در هیچ نقطه‌ای از سازه تنش‌های ایجاد شده از تنش‌های مجاز تجاوز نکنند.
این روش به دلیل سادگی و سهولت کاربرد تا چندی قبل به عنوان قابل استفاده‌ترین روش طراحی سازه‌های بتن آرمه مطرح بود. لیکن نقاط ضعف این روش استفاده از آن را محدود کرده است. مهمترین این نقاط ضعف عبارتند از:
الف: در این روش ایمنی به کمک تنها یک ضریب (ضریب اطمینان) و در یک مرحله منظور می‌شود، از آنجا که عواملی که لزوم تامین یک حاشیه ایمنی را ایجاب می‌کنند دارای ریشه‌ها و شدت‌های متفاوت هستند، در نظر گرفتن آنها تنها با کمک یک ضریب غیر منطقی است.
ب: بتن ماده‌ای است که تنها تا تنش‌های معادل نصف مقاومت فشاری آن به صورت الاستیک و خطی عمل می‌کند. بنابراین با بکار بردن درصدی از مقاومت فشاری بتن در محاسبات نمی‌توان اطلاعی از ضریب اطمینان کلی سازه در مقابل فروریختگی به دست آورد.
ج: به کار بردن این روش در طراحی بعضی مقاطع با اشکالات تئوریک مواجه است. به عنوان مثال در مقاطع خمشی تنش واقعی فولاد غالبا کمتر از مقداری است که با این روش محاسبه می‌شود.
تا سال ۱۹۵۶ میلادی روش تنش‌های مجاز مبنای محاسبات در آیین نامه ACI بود. این روش از سال ۱۹۷۷ تنها در قسمت ضمائم آیین نامه و تحت عنوان روش دیگر طراحی جا داده شد.

 روش مقاومت نهایی

روش مقاومت نهایی که در آیین نامه ACI به نام روش طراحی بر مبنای مقاومت موسوم است، حاصل مطالعات گسترده روی رفتار غیر خطی بتن و تحلیل دقیق مسئله ایمنی در سازه‌های بتن آرمه می‌باشد. روند طراحی در این روش را می‌توان به صورت زیر خلاصه نمود:

۱: باربهره برداری به وسیله ضریبی موسوم به ضریب بار افزایش داده می‌شود، بار حاصله را اصطلاحا بار ضریبدار یا بار نهایی می نامند.
۲: بارهای ضریبدار بر سازه اعمال می‌شوند و به کمک روش‌های خطی آنالیز سازه ها، نیروی داخلی مقاطع محاسبه می‌شود. به این نیروی داخلی اصطلاحا مقاومت لازم گفته می‌شود. مقاومت لازم در یک مقطع شامل: مقاومت خمشی لازم، مقاومت برشی لازم، مقاومت پیچشی لازم و مقاومت بار محوری لازم است.
۳: برای هر مقطع، مقاومت طراحی آن از حاصلضرب مقاومت اسمی در ضریبی کوچکتر از واحد به نام ضریب کاهش مقاومت به دست می‌آید. مقاومت اسمی، حداکثر مقاومتی است که مقطع قبل از گسیختگی از خود نشان می‌دهد. مقاومت اسمی یک مقطع مشتمل است از: مقاومت خمشی اسمی، مقاومت برشی اسمی، مقاومت پیچشی اسمی و مقاومت بار محوری اسمی.
۴: طراحی مقطع به نحوی که در آن مقاومت لازم از مقاومت طراحی کمتر باشد.
روش طراحی بر مبنای مقاومت، امروزه اساس کار طراحی سازه‌های بتن آرمه می‌باشد

روش طراحی بر مبنای حالات حدی

به منظور تکامل روش مقاومت نهایی، به ویژه از نظر نحوه منظور نمودن ایمنی، روش طراحی بر مبتای حالات حدی ابداع گردید. این روش هم اکنون مبنای طراحی در تعدادی از آیین نامه‌های اروپایی است، با این حال این روش هنوز نتوانسته است جای روش مقاومت نهایی را در آیین نامه ACI بگیرد. این روش از نظر اصول محاسبات مربوط به مقاومت، مشابه روش طراحی بر مبنای مقاومت است و تفاوت عمده آن با روش قبل، در نحوه ارزیابی منطقی تر ظرفیت باربری و احتمال ایمنی اعضا می‌باشد. در این روش نیازهای طراحی با مشخص کردن حالات حدی تعیین می‌شوند. منظور از حالات حدی شرایطی است که در آنها سازه مورد نظر خواسته‌های طرح را تامین نمی‌کند. طراحی سازه با توجه به سه حالت حدی زیر صورت می‌گیرد:

۱: حالت حدی نهایی، که مربوط به ظرفیت باربری می‌شود.
۲: حالت حدی تغییر شکل (مانند تغییر مکان و ارتعاش اعضا)
۳: حالت حدی ترک خوردگی یا باز شدن ترک ها


تاريخ : جمعه 6 ارديبهشت 1392برچسب:, | 13:30 | نویسنده : بهزاد دالوند

 

1. حداقل طول وصله در تیرها، ستونها و دالها، 55 برابر قطر آرماتور رعایت گردد. در صورتی که طول وصله کمتر از این مقدار باشد، محاسبات مربوطه در دفترچه محاسبات اضافه شود.
2. در ستونهای قابهای با شکل پذیری متوسط و زیاد، توجه شود که حداکثر نسبت آرماتور طولی در محل وصله به 6% محدود گردد. لذا در صورتی که نسبت آرماتور ستون بیش از 3% باشد، باید آرماتورهای مقطع، در طول ستون در محلهای متفاوت وصله شوند به نحوی که در هر مقطع ستون، نسبت آرماتور از 6% فراتر نباشد.
3. طبق بند های 9-20-3-2-2-7 و 9-20-4-2-3-10 در قابهای با شکل پذیری متوسط و زیاد، در محل اتصال ستون به شالوده، باید آرماتور عرضی حداقل در طول 300 میلیمتر در شالوده ادامه یابد. همچنین در قسمت های خارج از ناحیه بحرانی ستونها (محدوده میانی ستونها) طبق بند 9-12-6-4-1 حداکثر فاصله بین آرماتورهای عرضی ستون به d/2 محدود میشود.
4. در مورد آرماتور عرضی تیرها در قابهای با شکل پذیری متوسط و زیاد، حداقل طول "دو برابر ارتفاع تیر" برای آرماتورگذاری عرضی ویژه کنترل شود. همچنین حداکثر فاصله مجاز آرماتورهای عرضی در این ناحیه برابر یک چهارم ارتفاع موثر تیر (d) در نظر گرفته شود و فاصله اولین آرماتور عرضی از بر ستون بیش از 5 سانتیمتر نباشد.
5. در مورد تیرهای اصلی که تیرهای فرعی با بار قابل توجه به صورت تودلی به آنها متصل میشوند، باید آرماتور پیچشی طولی و عرضی محاسبه شده توسط نرم افزار به طور مناسب با آرماتورهای خمشی و برشی تیرهای اصلی ترکیب شده و در نقشه ها درج شود. در مورد جزئیات طراحی و نحوه ترکیب آرماتورها و چیدمان آنها در مقطع، توجه به بخشهای 9-12-7 تا 9-12-12 مبحث نهم لازم است. طبق بندهاي 9-12-8-3، 9-12-9-1 و 9-12-12-1 باید آرماتور پيچشي طولی به طور يكنواخت دور تا دور مقطع توزيع شده و تركيب آرماتور پيچشي (طولي و عرضي) با آرماتور خمشي و برشي انجام شود.
6. در مورد تغییر مقطع ستونهای بتنی که در نما قرار میگیرند، باید کوچک شدن ستون فقط از سمت داخل ساختمان انجام شود. با توجه به بخش 9-11-12 مبحث نهم، در صورتی که میزان عقب نشینی مقطع ستون از یک سمت بیش از 75 میلیمتر باشد یا شیب ملایم تر از 1 به 6 برای میلگرد طولی ستون تامین نشود باید در محل عقب نشینی آرماتور ستون پایینی با خم استاندارد مهار شود و برای ستون بالایی آرماتور انتظار در ستون پایینی پیش بینی شود. در مورد ستونهای میانی نیز که کوچک شدن مقطع از دو طرف انجام میگیرد، در صورتی که شرایط فوق برقرار باشد، باید آرماتوربندی با توجه به این جزئیات رسم شود. لطفا به شکل های ذیل توجه شود: 
۷. برای تیرهای با دهانه کوتاه در قابهای شکل پذیر متوسط و زیاد، توجه شود که طبق بند 9-20-3-1-1-1 مبحث نهم، حداکثر مقدار عمق موثر تیر باید به یک چهارم دهانه آزاد تیر محدود شود. همچنین به علت طول کوتاه این دهانه ها، نیروی برشی حاصل از زلزله در این دهانه ها نسبت به دیگر تیرها بیشتر بوده و آرماتور برشی مورد نیاز  نسبت به دیگر تیرها بیشتر خواهد بود که توجه طراح سازه به آن ضروری است.
8. در تیرهای قاب های خمشی بتنی با شکل پذیری متوسط و زیاد، طبق بندهای 9-20-3-1-2-2 و 9-20-4-1-2-2  باید در بر ستون مقاومت لنگر خمشی مثبت حداقل به میزان نصف مقاومت لنگر خمشی منفی تامین شود. به این منظور لازم است در بر ستونها مقدار آرماتور تحتانی (آرماتور فشاری) کمتر از نصف آرماتور فوقانی (آرماتور کششی) نباشد.
9. در تیرهای قاب های خمشی بتنی با شکل پذیری متوسط و زیاد، طبق بندهای 9-20-3-1-2-2 و 9-20-4-1-2-3 باید حداقل یک چهارم آرماتور موجود در مقاطع بر تکیه گاه ها، (هر انتها که آرماتور بیشتری دارد) در سراسر طول تیر ادامه داشته باشند.
10. در مقاطع تیرها، حداقل فواصل آزاد بین میلگردها طبق بخش 9-11-11 مبحث نهم رعایت گردد. رابطه تقریبی زیر به عنوان راهنما پیشنهاد می شود:
n=Integer[ (b-65) / (2db+35) ]
b : عرض تیر بر حسب میلیمتر
db : قطر میلگرد طولی بر حسب میلیمتر
n :  حداکثر تعداد میلگرد با احتساب میلگردهای سراسری و تقویتی
رابطه فوق درحالت وصله شدن کلیه میلگردها به دست آمده است. در صورتی که طول تیر به نحوی باشد که احتیاج به وصله نداشته باشد، حداکثر تعداد میلگردها قابل افزایش خواهد بود. به هر حال، در مواردی که تعداد میلگرد مورد نیاز بیشتر از حداکثر تعداد مجاز میلگرد باشد، باید آرماتورها در دو یا چند سفره چیده شوند. در این حالت  حداقل فاصله لازم بین سفره های متوالی، طبق بند 9-11-11-1-3 باید برابر حداکثر دو مقدار 25 میلیمتر و بزرگترین قطر میلگرد طولی باشد. در فایل کامپیوتری سازه نیز باید مقدار پوشش بتنی تیرها متناسب با تعداد سفره های میلگرد افزایش یابد به نحوی که نشان دهنده مرکز سطح تقریبی مجموعه میلگردها باشد.  جزئیات مورد نظر در شکل های فوق نشان داده شده است.
11. در مقاطع ستونها، حداقل فواصل آزاد بین میلگردها طبق بخش 9-11-11 مبحث نهم رعایت گردد. رابطه تقریبی زیر به عنوان راهنما پیشنهاد می شود:
n=Integer[ (c-55) / (2db+40) ]
c  : عرض ستون بر حسب میلیمتر
db : قطر میلگرد طولی ستون بر حسب میلیمتر
n :  حداکثر تعداد میلگرد در ضلع ستون به عرض c
12.در مورد تیرهایی که عرض آنها بزرگتر از عرض ستون تکیه گاهی است، جزئیات کامل اتصال تیر به ستون با رسم نحوه عبور آرماتورهای تیر از ستون نشان داده شوند.
13. توجه شود  که برای قابهای با شکل پذیری متوسط و زیاد، طبق بندهای 9-20-3-1-1-2 و 9-20-4-1-1-2 برون محوری هر عضو خمشی نسبت به ستونی که با آن قاب تشکیل می دهد، (فاصله محورهای هندسی دو عضو) نباید بیشتر از یک چهارم عرض مقطع ستون باشد.
14. با توجه به اینکه باید آرماتور تیرها با قلاب 90 در ستونهای کناری سازه مهار شوند و با توجه به اینکه طول قلاب استاندارد 90 حدود ۱۵ برابر قطر میلگرد است، حداقل اندازه مجاز ستونها 35x35 سانتیمتر خواهد بود که در این حالت حداکثر قطر مجاز برای آرماتور طولی تیر برابر 18 میلیمتر است. به عنوان یک رابطه تقریبی، حداقل بعد لازم برای ستون بر حسب قطر میلگرد تیر، برابر "۱۵ برابر قطر میلگرد + ۷۰" میلیمتر خواهد بود.
15. در صورت استفاده از آرماتور برشی مارپیچ، طبق بند 9-11-9-4-3 در هر گام مارپیچ فاصله آزاد بین میلگردها نباید از 75 میلیمتر بیشتر باشد.
16. در صورت استفاده از قاب خمشی بتنی با شکل پذیری زیاد، توجه شود که کنترل آرماتور عرضی ستونها در نواحی بحرانی (موضوع بند 9-20-4-2-3-2) توسط نرم افزار انجام نمی شود و این محاسبات باید به صورت دستی در دفترچه محاسبات انجام و آرماتور لازم در نقشه ها درج گردد.
17. در صورت استفاده از دیوار برشی، برای انتقال بار از دیافراگم سقف به دیوار برشی باید آرماتور دوخت مورد نیاز با عملکرد برش اصطکاکی طبق بخش 9-12-13 برای نیروهای انتقالی دیافراگم که از بخش 6-7-2-7 محاسبه می شود طراحی گردد. این نکته باید در مورد دیوارهایی که به علت قرار گرفتن در کنار بازشوهای سقف، اتصال کامل به دیافراگم ندارند به طور ویژه بررسی شود. توصیه می شود اصولا از کاربرد دیوارهای برشی در کنار بازشوهای سقف اجتناب گردد.
18. در مورد دالهای بتنی (سقف و رمپ) کنترل حداقل ضخامتها طبق ضوابط فصل 14 مبحث نهم مقررات ملی ساختمان در دفترچه محاسبات انجام گیرد. در غیر این صورت باید کنترل تغییر شکل برای ضخامت مورد نظر، طبق ضوابط این فصل با انجام محاسبات تغییر شکل در حالت بهره برداری، انجام شود.
19. طبق بند 9-9-7-2 در سازه های بتنی در صورتی که طول یا عرض ساختمان از مقادیر تعیین شده (35 متر برای شرایط آب و هوایی تهران) تجاوز کند، اجرای درز انبساط به مقدار حداقل  الزامی است. درز انبساط باید در شالوده نیز ادامه یابد. در ضمن با توجه به شرایط سازه باید مقدار درز انبساط با حداقل عرض درز انقطاع نیز طبق بند 6-7-1-3-4 کنترل گردد.
 20. در مورد آرماتور عرضی ستونها در قابهای با شکل پذیری متوسط و زیاد، حداقل طول برای ناحیه آرماتورگذاری عرضی ویژه برابر حداکثر مقادیر"یک ششم ارتفاع آزاد ستون، ضلع بزرگتر مقطع مستطیل یا قطر دایره و 450 میلیمتر" کنترل شود. همچنین حداکثر فاصله مجاز آرماتورهای عرضی در این ناحیه برابر حداقل مقادیر"8 برابر قطر کوچکترین میلگرد طولی ستون، 24 برابر قطر خاموت، نصف کوچکترین ضلع مقطع ستون و 150 میلیمتر" در نظر گرفته شود و فاصله اولین آرماتور عرضی از بر اتصال ستون به تیر نباید بیش از نصف مقادیر فوق باشد. در ناحیه میانی ستون، حداکثر فاصله مجاز آرماتورهای عرضی برابر حداقل مقادیر "نصف ارتفاع موثر مقطع (d/2) و 250 میلیمتر" در نظر گرفته شود.
 21. در مورد ستونهایی که هم در تراز طبقه و هم در تراز میان طبقه به آنها تیر متصل می شود (مانند ستونهای پاگرد پله ها و ستونهای واقع در مرز اختلاف تراز ساختمانهای دوبلکس) برای کنترل بند 20، در اغلب موارد ابعاد ستون به نحوی است که باید خاموت گذاری ویژه در کل ارتفاع ستون به صورت پیوسته انجام گیرد.
 
 
 


تاريخ : چهار شنبه 4 ارديبهشت 1392برچسب:, | 18:35 | نویسنده : بهزاد دالوند

 

امروزه با پیشرفت علوم و تکنولوژی نیازها و خواسته های جدیدی در زمینه مهندسی سازه رخ نموده است.  عامل زمان در ساخت سازه ها اهمیت دوچندان یافته و این امر گرایش به سازه های پیش ساخته را افزایش داده است همچنین با افزایش جمعیت بشری علاقه به داشتن فضاهای بزرگ بدون حضور ستون های میانی خواهان بسیاری پیدا کرده است.  در این راستا از اوایل قرن حاضر تعدادی از متخصصین مجذوب قابلیت های منحصر بفرد سازه های فضاکار گشته پاسخ بسیاری از نیازهای جدید را در این سازه ها جسته اند و البته به نتایج بسیار مثبتی نیز دست یافته اند.  با انتشار این نتایج روز به روز این عرصه با اقبال بیشتری مواجه گردید به گونه ای که با گذشت چندین دهه هنوز هم مطالعه سازه های فضاکار در کانون متخصصین و دانشجویان قرار دارد.  در این مقاله منظور از عبارت سازه فضاکار سیستم های اسکلت فلزی بوده که از بافت تعدادی زیادی المان یا مدول با شکلهای استاندارد به یکدیگر تشکیل می شوند و نهایتاً یک سیستم سبک و با صلبیت زیاد را ایجاد می کنند.  سازه های فضاکار در اشکال بسیار متنوعی ساخته می شوند که مهمترین آنها عبارتند از : شبکه های مسطح دو یا چند لایه، چلیک ها، گنبدها و قوس ها.  علاوه بر این، سازه های فضاکار دارای بافتار متنوعی نیز می باشند.  بدین ترتیب که با تغییر در آرایش المان ها می توان بافتار جدید ایجاد کرد و بدیهی است که کارایی هر بافتار باید در مقایسه با بافتارهای دیگر سنجیده شود.  مثالهای متعددی از سازه های فضاکاری که در دنیا و ایران ساخته شده است وجود دارد؛ استادیوم های ورزشی، مراکز فرهنگی، سالن های اجتماعات، مراکز خرید، ایستگاه های قطار، آشیانه های هواپیما ها، مراکز تفریحی، برجهای رادیویی و…

 
1297772083 سازه های فضایی

۲-تعریف و تاریخچه سازه های فضاکار:

 به سازه ای که اصولا رفتار سه بعدی داشته باشد، به طوریکه به هیچ ترتیبی نتوان رفتار کلی آن را با استفاده از یک یا چند مجموعه مستقل دوبعدی تقریب زد، سازه فضاکار نامیده می شود.  با این تعریف طیف وسیعی از سازه ها یعنی حتی برخی از قوس ها و گنبدهای آجری گذشته نیز جزء سازه های فضاکار محسوب می شوند، اما در اینجا منظور سازه های سه بعدی خاص هستند که معمولاً دارای اعضای مستقیم با اتصالات صلب یا مفصلی می باشند.
 

۳- انواع سازه های فضاکار :

 

الف) شبکه های تخت : به ترکیب یک سیستم یک یا چند وجهی با لایه های واحد شبکه گفته می شود.  شبکه مسطح ترکیبی از یک دو وجهی که با تیرهای واحد متصل شده است می باشد.  شبکه های تخت می توانند دارای یک، دو یا سه و حتی چند لایه باشند، ولی بیشتر به صورت دو لایه مورد استفاده قرار می گیرند.  شبکه های دولایه از دو صفحه موازی که بوسیله عناصری به هم متصل گردیده اند تشکیل می شوند.  یک نمونه استفاده از این شبکه ها در آشیانه هواپیما است.  زمانی که اعضا در شبکه دولایه طویل شوند برای جلوگیری از خطرکمانش کردن از شبکه های سه لایه استفاده می شود و با توجه به اینکه نیمی از هزینه های سازه های فضاکار را پیوندها تشکیل می دهند این نوع سازه ها اغلب غیر اقتصادی است.  نکته دیگری که در طراحی شبکه های دولایه و اکثر سازه های فضاکار باید در نظرگرفت این است که برای توزیع بهتر نیرو و کششی شدن آن ستون ها در داخل شبکه قرار می گیرند و ستون به چند گره متصل شود و بهتر است برای توزیع منظم نیرو در سازه ها در اطراف کنسول داشته باشیم.

 

ب) شبکه های چلیک : به شبکه ای که در یک جهت دارای انحنا باشد، چلیک می گویند.  این سازه بیشتر برای پوشش سطوح مستطیلی دالان مانند استفاده شده و بعضاً فاقد ستون می باشند و روی لبه های چلیک که به تکیه گاه متصل است، قرار می گیرند.  چلیک ها دارای محور می باشند.  اگر چلیک یک لایه باشد اتصالات به شکل صلب است.  چلیک ها اغلب به شکل ترکیبی استفاده می شوند و تیرکمری نقش ترکیب کردن چلیک ها به یکدیگر را بازی می کنند.  نکته ای که در طراحی این نوع سازه ها باید در نظرگرفت این است که انتهای چلیک باید قوی باشد و این تقویت را می شود بوسیله تیر، و تیروستون و شکل خورشیدمانند انجام داد.  انواع چلیک ها عبارتند از : چلیک اریبی، چلیک لملا با مقاطع بیضی گون، سهمی گون، هذلولی گون و… .

 

 اگر شبکه ای در دو جهت دارای انحنا باشد، گنبد نامیده می شود.  شاید رویه یک گنبد بخشی از یک کره یا یک مخروط با اتصال چندین رویه باشد.  گنبدها سازه هایی با صلبیت بالا می باشند و برای دهانه های بسیار بزرگ تا حدود ۲۵۰ متر مورد استفاده قرار می گیرند.  ارتفاع گنبد باید بزرگتر از ۱۵% قطر پایه گنبد باشد.  گنبدها دارای مرکز هستند.  از انواع گنبدها می توان گنبد از نوع دنده ای اشاره کرد که در صورتیکه تعداد دنده ها زیاد باشد باید به مسیله شلوغی اعضا در راس گنبد توجه شود که برای اجتناب از این مسیله بهتر است که برخی از دنده های نزدیک رأس، حذف شود.  گنبد دیگری به نام اشفدلر ( مهندس آلمانی ) وجود دارد که تعداد زیادی از این نوع گنبدها بعد از قرن ۱۹ توسط اشفدلر و دیگران ساخته شده است.  از ایرادات این گنبد می توان به مسیله شلوغی اعضا در رأس اشاره کرد، که برای حل این مشکل همان راه حل بالا ارایه می شود.  نمونه دیگر از گنبدها، گنبد لملا است.  این گنبد را می توان به نوعی ترکیبی از یک یا چند حلقه که با یکدیگر متقاطع هستند، دانست.  از نمونه دیگر گنبدها می توان به گنبدهای دیامتیک و گنبدهای حبابی و ژیودزیک اشاره کرد.  اتصالات در گنبدهای دنده ای و اشفدلر حتماً صلب هستند.  از لحاظ پخش منظم نیرو، گنبدهای ژیودزیک، دیامتیک و حبابی بسیار مناسب هستند.

 

۴- امتیازات سازه های فضاکار :

 

امروزه در سراسر دنیا سازه های فضاکار به سرعت در حال پذیرش و مقبولیت در بین طراحان و مهندسین سازه می باشند، این امر را نمی توان فقط مرهون جذابیت و زیبایی بیشتر این سازه ها دانست، بلکه دلایل متعددی که در ذیل به پاره ای از آنها اشاره می شود در گسترش محبوبیت این سازه ها موثر بوده است :

 

·        جذابیت و زیبایی بیشتر و قابلیت ساخت انواع فرمهای دلخواه

 

·        ذخیره مقاومتی بیشتر به دلیل داشتن درجات نامعینی بالا در مقایسه با سایر سازه های متداول.

 

·        سختی و صلبیت زیاد این سقف ها قابلیت استثنایی برای حمل بارهای بزرگ متمرکز و غیر متقارن بوجود می آورد.

 

·    سیستم های فضاکار برای پوشش سالن های بزرگ اجتماعات، سالن های نمایشگاهی، ورزشگاه ها، آشیانه هواپیما، کارخانه های صنعتی، مساجد و به طور کلی تمام سازه هایی که به نحوی محدودیت تکیه گاه های میانی دارند، ایده ال بوده و در این موارد از نظر جلوه های ظاهری و مسایل سازه ای حالت منحصربفردی را نسبت به سایر سیستم های جایگزین ایجاد می کند.

 

·    اکثر سیستم های فضاکار پیش ساخته بوده و قطعات مورد نیاز آنها انبوه سازی می شوند به همین دلیل این سیستم ها معمولاً به سادگی و در زمان کوتاهی تولید و نصب می شوند.

 

·     در آخر می توان گفت که اصلی ترین علت گسترش روز افزون سازه های فضاکار در جهان، اقتصادی تر بودن این سیستم ها است.

 



تاريخ : چهار شنبه 4 ارديبهشت 1392برچسب:, | 17:26 | نویسنده : بهزاد دالوند

 

بقیه عکس ها در ادامه مطلب

لطفا به ادامه مطلب بروید

 



ادامه مطلب
تاريخ : سه شنبه 3 ارديبهشت 1392برچسب:, | 14:44 | نویسنده : بهزاد دالوند
تاريخ : سه شنبه 3 ارديبهشت 1392برچسب:, | 14:34 | نویسنده : بهزاد دالوند
تاريخ : سه شنبه 3 ارديبهشت 1392برچسب:, | 14:9 | نویسنده : بهزاد دالوند
تاريخ : سه شنبه 3 ارديبهشت 1392برچسب:, | 13:35 | نویسنده : بهزاد دالوند

 

 

                                                                                                                                                        

 

 



ادامه مطلب
تاريخ : سه شنبه 3 ارديبهشت 1392برچسب:, | 13:20 | نویسنده : بهزاد دالوند

 

 

 

پل های زیبا و معروف دنیا Erasmusbrug پل معروف زیبا جالب و دیدنی بزرگ

 

پل های زیبا و معروف دنیا Millau%20Bridge پل معروف زیبا جالب و دیدنی بزرگ

 

 

پل های زیبا و معروف دنیا T%20Sing%20Ma%20Bridge پل معروف زیبا جالب و دیدنی بزرگ

 

 



صفحه قبل 1 2 صفحه بعد
  • قالب میهن بلاگ
  • سایت بک لینک